US009134970B2

a2z United States Patent (10) Patent No.: US 9,134,970 B2
Ioannou et al. 45) Date of Patent: Sep. 15, 2015
’
(54) SOFTWARE DEVELOPMENT 2004/0243968 Al 12/2004 Hecksel
METHODOLOGY SYSTEM FOR gggygézg% Al * %88; E?etsch etal. e 705/7
1
IMPLEMENTING BUSINESS PROCESSES 2008/0065454 Al 3/2008 Watanabe
. . . 2008/0086354 Al 4/2008 Nagar
(71) Applicant: Oracle International Corporation, 2008/0120573 Al* 5/2008 Gilbertetal. 715/835
Redwood Shores, CA (US) 2010/0257106 A1 10/2010 Iyer etal.
2010/0280883 Al 112010 Ioannou
(72) Inventors: Andrew Ioannou, San Francisco, CA %8} };82245‘ égg ﬁ} : lgggﬁ gon Ul?vierlth etal. ... 7(7)(5)/5 3/‘3‘2
(US); Mark Vilrokx, San Mateo, CA WECR ELAL e
Eggg, Joel Dupont, San Francisco, CA FORFIGN PATENT DOCUMENTS
WO 2010019564 Al 2/2010
(73) Assignee: Oracle International Corporation, OTHER PUBLICATIONS
Redwood Shores, CA (US)
Wikipedia, “Agile software development”, http://en.wikipedia.org/
(*) Notice: Subject to any disclaimer, the term of this wiki/Agile software developnnent, last downloaded Jan. 8, 2013,
patent is extended or adjusted under 35 pp. 1-13.
U.S.C. 154(b) by O days.))
* cited by examiner
(21) Appl. No.: 13/737,990 Primary Examiner — Don Wong
- Assistant Examiner — Devayani R. Ralukdar
(22) Filed: Jan. 10, 2013 (74) Attorney, Agent, or Firm — Miles & Stockbridge P.C.
(65) Prior Publication Data (57) ABSTRACT
US 2014/0196001 A1 Jul. 10, 2014 A software developmeI}t tool. for developing software that
implements a customer’s business processes. The software
51y Int. Cl development tool determines a plurality of models to define
(31) Int.CL the software to be developed, wherein at least one model of
GO6F 9/44 (2006.01) the plurality of models is a business model that comprises at
G06Q 10/06 (2012.01) least one business process, and the at least one business pro-
(52) US.CL cess is a set of interrelated business process paths that accom-
CPC . GOG6F 8/35 (2013.01); GO6Q 10/06 (2013.01) plish a business goal. The software development tool defines
(58) Field of Classification Search at least one business process path, wherein the at least one
None business process path is a route through the at least one
See application file for complete search history. business process taken during a single execution of the at least
one business process, and the at least one business process
(56) References Cited path comprises at least one step. The software development

U.S. PATENT DOCUMENTS

5,734,837 A * 3/1998 Floresetal. 705/7.13
6,910,204 Bl 6/2005 Rossomando
7,644,390 B2 1/2010 Khodabandehloo et al.
7,949,993 B2* 5/2011 Milliganc.ccccevevevenne 717/105
8,457,996 B2* 6/2013 Winkleretal. 705/7.11
2002/0078046 Al 6/2002 Uluakar et al.
2004/0078777 Al* 4/2004 Bahrami 717/105

1001

1002

tool maps the defined at least one business process path to a
second model different than the business model, wherein the
mapping identifies at least one part of the second model that
implements the at least one step of the business process path.
The software development tool builds the at least one busi-
ness process path based on results of the mapping. The soft-
ware development tool delivers the at least one business pro-
cess path that has been built.

20 Claims, 10 Drawing Sheets

Define a business process path

¥

1003

-~ Define mappings for the business process path

1004

¥

Prasent build fist to build business process path

¥

1005

- {Deﬂver business process path that has been built

US 9,134,970 B2

Sheet 1 of 10

Sep. 15, 2015

U.S. Patent

PT Asowow
Aijeuoipuny ajnpow WiysAS
jeuoiippy 1uawdojeAap alemiyos 8upesado
St /
1

w7
J0SS930.d

ao1Ae Qg
UOIIEINUNLILIOY

0c¢

14
[OLUOD) JOSIND

9
paieogAad

vT
Aejdsig

U.S. Patent Sep. 15, 2015 Sheet 2 of 10 US 9,134,970 B2

201

202 203

Fig. 2

US 9,134,970 B2

Sheet 3 of 10

Sep. 15, 2015

U.S. Patent

a0t

AL BRI AN

~1o¢g

US 9,134,970 B2

Sheet 4 of 10

Sep. 15, 2015

U.S. Patent

2o WS AW 10

STRI AL

oRanf DEY
fnred L

pdigden

e oo ool mamRad o a amiams

Eﬁ%%&%&%gm

€0y
[44}7

“10v

US 9,134,970 B2

Sheet 5 of 10

Sep. 15, 2015

U.S. Patent

oy

e ey faEnaotd

508

ity anietinyg

I 4]

i Fuy westioy TEhedem

€05

pueplting His

wdaign cpg Sununsury - . Nom

QTR IRY

duys ARoey

duys weoRy

awa(y o APRSY

pRINFIT LI S FINTAeET Ay
¥

IWEI
Hucen oINI GII B FUTIID TTIA SRUILL

00s

US 9,134,970 B2

Sheet 6 of 10

Sep. 15, 2015

U.S. Patent

DARENE

s

e L

s 3
psdn

ST 4 RIS SEEUEK

prn

RETSSI

&
¥ den

K 1

EATL S LR IEE

Ea il A o A S

svigy

#2547

afegunsey o

EtE]

US 9,134,970 B2

Sheet 7 of 10

Sep. 15, 2015

U.S. Patent

10

eI

SYRDIES S

e

3,

PR

AR

S ,"m"m"m"m"m"m"m"m"m"m"mwmwm”m"“"”"”"“"”"”"“"”"”"“"”"”"“"”"”"“"”"”"“"”"”"“"”"”"“"”"”"“"”"”"“"”"”"“"”nmmmmmmmmmnﬁ

i

U.S. Patent Sep. 15, 2015 Sheet 8 of 10 US 9,134,970 B2

&

Fig.

805

US 9,134,970 B2

Sheet 9 of 10

Sep. 15, 2015

U.S. Patent

103 SR o AUl AuD

BRIBS 3T MOLDEY

&

3w

HIFETEIT I Ry

Wiy

1

&S

3y e

56 2

L @Rg pe

Lendey BTR S RING 1

FUE; A9 i
RILG i

A,

RIS

006

B R

U.S. Patent Sep. 15, 2015 Sheet 10 of 10 US 9,134,970 B2

1001
Determine models to define software

¥

1002

Define a business process path

Y

1003

Define mappings for the business process path

é

1004

" Present build list to build business process path

\

1005

- Deliver business process path that has been buiit

Fig. 10

US 9,134,970 B2

1
SOFTWARE DEVELOPMENT
METHODOLOGY SYSTEM FOR
IMPLEMENTING BUSINESS PROCESSES

FIELD

One embodiment is directed generally to a computer sys-
tem, and in particular to a computer system that provides a
software development tool for developing software that
implements a customer’s business processes.

BACKGROUND INFORMATION

A software development methodology is an approach used
to organize, design, and coordinate the process of developing
an information system. One example of a software develop-
ment methodology is the “Waterfall” development model. In
the Waterfall model, developers use a sequential development
approach in which development is seen as progressing
through the phases of needs analysis, design, implementa-
tion, testing, integration, and maintenance.

Another example of a software development methodology
is the “Agile” development model. In the Agile development
model, developers iteratively and incrementally develop an
information system. The changeable needs and solutions of
each project are often determined through cooperation
between individuals who have different functional expertise
and who work toward a common goal. Agile development
encourages the developers to respond to changes within the
project, and also supports evolutionary development and
delivery. The iterative approach that is performed in accor-
dance with the Agile development model is generally per-
formed within a fixed period of time.

SUMMARY

One embodiment is a software development tool for devel-
oping software that implements a customer’s business pro-
cesses. The software development tool determines a plurality
of' models to define the software to be developed, wherein at
least one model of the plurality of models is a business model
that comprises at least one business process, and the at least
one business process is a set of interrelated business process
paths that accomplish a business goal. The software develop-
ment tool defines at least one business process path, wherein
the at least one business process path is a route through the at
least one business process taken during a single execution of
the at least one business process, and the at least one business
process path comprises at least one step. The software devel-
opment tool maps the defined at least one business process
path to a second model different than the business model,
wherein the mapping identifies at least one part of the second
model that implements the at least one step of the business
process path. The software development tool builds the at
least one business process path based on results of the map-
ping. The software development tool delivers the at least one
business process path that has been built.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is an overview block diagram of a computer system
that provides a software development tool for developing
software that implements a customer’s business processes in
accordance with an embodiment of the present invention.

FIG. 2 illustrates three models that are used in accordance
with one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 is a screen shot of a business process diagram of a
business model, shown via an interface, in accordance with
one embodiment.

FIG. 4 is a screen shot of business process paths of a
business process, shown via an interface, in accordance with
one embodiment.

FIG. 5 is a screen shot of a single business process path, via
an interface, in accordance with one embodiment.

FIG. 6 is a screen shot of a functional model, shown via an
interface, in accordance with one embodiment.

FIG. 7 is a screen shot of mapping information between a
business model and a functional model, shown via an inter-
face, in accordance with one embodiment.

FIG. 8 is a screen shot of a hierarchy of the functional
model that shows which functional features are mapped to
business process paths, shown via an interface, in accordance
with one embodiment.

FIG. 9 is a screen shot of a technical model, shown via an
interface, in accordance with one embodiment.

FIG. 10 is a flow diagram of the functionality of the soft-
ware development module of FIG. 1 in accordance with one
embodiment.

DETAILED DESCRIPTION

One embodiment is a software development methodology
that allows a user to: (1) produce software that implements a
customer’s business processes; (2) deliver content rapidly to
the customer; and (3) deliver content incrementally in a way
that is useful to the customer. The software development
methodology uses business process paths as the central focus
of the development process. Because the software develop-
ment methodology uses business process paths as the central
focus during the development process, each subsequent
delivery of content to the customer expands the capabilities of
an overall delivered product in a known, communicable way.

In developing software for customers, a variety of chal-
lenges arise. One challenge is that it may be difficult to release
meaningful software updates to customers on a frequent
basis. A meaningful software update is generally considered
to be an update that is both understandable by and valuable to
the customer.

Another challenge in software development is that it may
be difficult to avoid wasteful development efforts when
releasing the updates. As a result of wasteful development
efforts, software development organizations often create and
provide bloated software to customers because the software
development organizations lose sight of the core require-
ments of the customers during the development process.

Another challenge in software development is that it may
be difficult to react to a rapidly changing external environ-
ment. For example, certain capabilities of a software appli-
cation might suddenly become essential for a successful
product (e.g., a time-and-attendance application might sud-
denly require mobile capabilities to compete in the market-
place as a result of a sudden ubiquitous use of mobile
devices). When a specific capability suddenly becomes
essential to a software application, this capability needs to
become an “instant” top priority for the software develop-
ment organization. However, it may be difficult for the soft-
ware development organization to change existing develop-
ment plans of the software application without incurring large
re-planning and re-estimation costs. In addition, changing
development plans may result in introducing uncertainty in
the development process, leading to lost productivity within
the software development organization.

US 9,134,970 B2

3

As another example of needing to react to a rapidly chang-
ing external environment, a software development organiza-
tion working with customers who are early adopters may face
pressure by the early adopters to develop certain capabilities
ahead of others.

Another challenge in software development is that it may
be difficult to avoid poor software quality due to ineffective
and inefficient handover between the various parties (each
party often having a different role than others) engaged in
developing a piece of software.

In the previous methods of software development, no
methodology or supporting toolset was available to suffi-
ciently address all of the above challenges at the same time.
Although agile development principles address some of the
above challenges, agile development principles are insuffi-
cient in addressing all of the above challenges at the same
time.

In the past, when software development organizations
encountered the above problems, the software development
organizations were providing their software to customers in a
customer environment that was more forgiving. Customers
were more accepting of long development cycles, long imple-
mentations, partially due to the fact that it was not clear how
software models actually satisfied the customers’ business
processes, and copious documentation. Software develop-
ment organizations tried to mitigate these problems through
intelligent planning and communication, but, in the previous
methods, there was no underlying methodology that could
deal with these issues at the outset of a project. The current
movement from on-premise software delivery models to soft-
ware-as-a-service (“SaaS”) software models is evidence that
software development organizations are attempting to resolve
the problems as previously described.

In contrast with the previous approaches, embodiments of
the present invention allow a user to: (1) produce software
that implements a customer’s business processes; (2) deliver
customer content rapidly; and (3) deliver content incremen-
tally in a way that is useful to a customer.

FIG. 1is an overview block diagram of a computer system
10 that provides a software development tool for developing
software that implements a customer’s business processes in
accordance with an embodiment of the present invention.
Although shown as a single system, the functionality of sys-
tem 10 can be implemented as a distributed system. System
10 includes a bus 12 or other communication mechanism for
communicating information, and a processor 22 coupled to
bus 12 for processing information. Processor 22 may be any
type of general or specific purpose processor. System 10
further includes a memory 14 for storing information and
instructions to be executed by processor 22. Memory 14 can
be comprised of any combination of random access memory
(“RAM”), read only memory (“ROM”), static storage such as
a magnetic or optical disk, or any other type of computer
readable media. System 10 further includes a communication
device 20, such as a network interface card, to provide access
to a network. Therefore, a user may interface with system 10
directly, or remotely through a network or any other known
method.

Computer readable media may be any available media that
can be accessed by processor 22 and includes both volatile
and nonvolatile media, removable and non-removable media,
and communication media. Communication media may
include computer readable instructions, data structures, pro-
gram modules or other data in a modulated data signal such as
a carrier wave or other transport mechanism and includes any
information delivery media.

10

30

40

45

55

4

Processor 22 may be further coupled via bus 12 to a display
24, such as a Liquid Crystal Display (“LCD”). A keyboard 26
and a cursor control device 28, such as a computer mouse,
may be further coupled to bus 12 to enable a user to interface
with system 10.

In one embodiment, memory 14 stores software modules
that provide functionality when executed by processor 22.
The modules include an operating system 15 that provides
operating system functionality for system 10. The modules
further include a software development module 16 that pro-
vides a software development tool for developing software
that implements a customer’s business processes, as dis-
closed in more detail below. System 10 can be part of a larger
system. Therefore, system 10 will typically include one or
more additional functional modules 18 to include the addi-
tional functionality, such as functionality for receiving and
processing a customer’s business processes and correspond-
ing business process paths. A database 17 is coupled to bus 12
to store data used with modules 16 and 18.

FIG. 2 illustrates three models that are used in accordance
with one embodiment. Certain embodiments of the invention
create various models to define a software application to be
developed. In one embodiment of the invention, three models
are used: a business model 201, a functional model 202, and
a technical model 203. Although each model is defined inde-
pendently, the models are related to one another through a
mapping between them. Although certain embodiments use
three models, other embodiments may use less or more mod-
els in the development process.

Business model 201 comprises business processes and sets
of business process paths of the software application to be
developed. A business process is considered to be a set of
interrelated business process paths which accomplish a busi-
ness goal. Business processes may also be considered as
high-level business purposes, described in a natural way from
abusiness perspective. Functional model 202 covers the func-
tional architecture/design of the software application. Tech-
nical model 203 covers the technical architecture/design of
the software application.

As described above, in one embodiment, business model
201 comprises business processes. The business processes
may be presented in business process modeling notation
(“BPMN”) format. Each business process may comprise or
be defined by business process paths. Each business process
path is a particular route through a corresponding business
process taken during a single execution of the business pro-
cess. Further, in addition to defining a route through a corre-
sponding business process, a business process path also con-
tains additional information describing a traversal of the
business process. For example, a business process path may
include an annotation for each step on the chosen route
through the business process. In one embodiment, a business
process path is a use-case (i.e., a method of using a business
process) tied to the business process.

As illustrated in FIG. 2, and as previously described, the
models (201, 202, and 203) are related and mapped to each
other. Mapping identifies which parts of one model represent/
implement parts of another model. Mapping ensures that all
of the features of one model flow through the design process
into subsequent models and are fully implemented by the end
of the development process. For example, suppose a user
wishes to ensure that a specific business process is imple-
mented. By fully mapping the specific business process, the
mapping ensures that the business process is implemented by
each of business model 201, functional model 202, and tech-
nical model 203.

US 9,134,970 B2

5

FIG. 3 is a screen shot of a business process diagram 302 of
a business model, shown via an interface 301, in accordance
with one embodiment. In one embodiment, a business pro-
cess diagram 302 is used to illustrate each business process of
business model 201 of FIG. 2.

Certain embodiments read business process diagrams cre-
ated by other tools, in BPMN 2 format, for example, and
includes them in business model 201 of FIG. 2. In another
embodiment of the invention, users create and maintain busi-
ness process diagrams “inline,” either based on a proprietary
format, or again, based on the BPMN 2 format.

Although business process diagram 302 is associated with
business model 201 of FIG. 2, the business process diagram is
not mapped directly to functional model 202 of FIG. 2.
Instead, steps (303, 304,305, 306, and 307) of corresponding
business process paths of business process diagram 302 are
mapped to functional model 202. In one embodiment, the
functional model is a hierarchy in which its leaf nodes are
mapped to the steps of the corresponding business process
paths, as described in further detail below.

In one embodiment, the business process path is the atomic
unit of content delivered to the customer. In other words, each
business process path may be considered to be the fundamen-
tal unit of a deliverable piece of product functionality/capa-
bility to the customer. The functionality of such a fundamen-
tal unit is easily understood by every team involved in the
development process and also by customers. As such, certain
embodiments use the business process path as the atomic unit
of'content delivered in order to: (1) ensure functional integrity
by mapping each particular business process path to the func-
tional features that support that business process path in the
product, and (2) to enable meaningful incremental delivery,
as described above. A software application is built out over
the layering of many business process paths, delivered itera-
tively.

Certain embodiments allow a user to create any number of
business process paths, based on the business processes
present in a business model, and include them in business
model 201 of FIG. 2. In another embodiment, users may
select nodes in a business process (the nodes corresponding to
steps within corresponding business process paths) and then
annotate each step of the business process path as desired. In
another embodiment, a user may draw business process paths
graphically onto business process diagram 302, adding anno-
tation as desired.

For example, suppose that a software development process
aims to deliver a business process generally directed to “pro-
cessing timecards.” This overall business process may com-
prise many business process paths (e.g., different ways to
process time cards). The software development process may
deliver a first business process path (e.g., a first way to process
time cards) directed to “entering and saving a project-based
timecard.” Next, at a later time, the development process
might deliver a different business process path (of the same
business process) directed to “submit a payroll-based time
card.” Over time, with the delivery of many different business
process paths of a same business process, the whole business
process will be fully implemented by the development pro-
cess.

As described above, in one embodiment, each business
process path is mapped to the functional model. Specifically,
each step in a given business process path is mapped to one or
more functional features. Mapping is performed in a mini-
malistic manner so that only the functional features that are
necessary for performing a step in a business process path are
mapped to that step of that business process path.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Each mapping may also require signoff by interested par-
ties/reviewers in order to ensure that the mappings are per-
formed properly. In one embodiment “interested parties™ are
deemed to comprise individuals who authored or modified the
objects involved in the mapping plus any users of a tool who
have a registered interest in any of the objects involved in the
mapping through some kind of “watchlist” functionality.
Signoff may be used to ensure that a bare minimum collection
of functional features that are required to enable a business
process path have been selected. As such, certain embodi-
ments allow users to avoid “functionality bloat™ of the soft-
ware.

FIG. 4 is a screen shot of business process paths of a
business process, shown via an interface 400, in accordance
with one embodiment. Interface 400 provides a list of busi-
ness process paths (401, 402, and 403) that correspond to the
business process illustrated by business process diagram 302
of FIG. 3. Interface 400 also allows a user to switch between
the “Business Model”, “Functional Model”, and “Technical
Model”.

As illustrated in FIG. 4, interface 400 provides a mapping
status 405, a development status 406, a priority 407, and point
score 408. Mapping status 405 provides an indication to a
user regarding whether each business process path has been
fully mapped to other models (e.g., the functional model). For
example, in one embodiment, the status of a path becomes
“mapped” when all of the steps in the path have been mapped
and have been signed off by the relevant interested parties.
Interface 400 also includes development status 406 that pro-
vides an indication to a user regarding how the business
process path is progressing within a lifecycle of development
of'the business process path. Interface 400 also includes icon
409 that allows a user to register as an interested party.

By showing how each business process path is progressing
within a lifecycle of development, certain embodiments allow
auser to manage the lifecycle of the business process path. A
business process path goes through many development stages
(which can also be thought of as statuses and are reflected by
development status 406, for example) from its creation to
completion. Actions within a development stage may be per-
formed explicitly (e.g., via manual intervention by a user), or
through information derived from other systems, or by the
system itself. Actions within a development stage may also be
performed automatically based on input from outside systems
that work, in some way, with the path. For example, a sepa-
rate, agile-development-based build tool that builds the path
may perform actions that progress the path through a devel-
opment stage. Similarly, transitions between development
stages may also be performed explicitly, or through informa-
tion derived from other systems, or by the system itself.

As an example of manually transitioning between devel-
opment stages, a “ready to demo” status may be set manually
when a development resource building a business process
path is ready for the demo to take place on the path. Even
though the transitioning between development stages is per-
formed manually, the system can still validate the status
change if it is an appropriate change. The exact development
stages in the life-cycle of a path may vary depending on each
chosen implementation, but some example statuses of devel-
opment stages include: (1) Placeholder (where the known
characteristics of the path include a provisional name), (2)
Detailed (requires the path to have steps defined), (3) Mapped
(requires path to have been mapped and signed oft), (4) Build-
ing (path has been moved into development phase), (5) Built,
(6) Ready to Demo, (7) Demoed (Demo given to Quality
Assurance (“QA”)—manual update made by QA), (8) Ready
for QA (mandatory fixes made—no showstopper issues
against path), (9) In QA, and (10) Complete, for example.

US 9,134,970 B2

7

Because the driver of incremental delivery (the business pro-
cess path) has a life-cycle, the progress of the delivering each
increment can be monitored. As such, incremental delivery is
enabled.

Other embodiments allow a user to log issues against any
object in any of the models or mappings between the models.
Existing issues, linked indirectly or directly to the path, canbe
used to stop the path from progressing through its life-cycle,
if necessary. This provides a centralized issue/defect tracking
component required for real-world development.

Interface 400 also provides a priority 407 for each business
process path. In one embodiment, business process paths are
created and prioritized as soon as a corresponding business
process is created, as described in more detail below. Inter-
face 400 also provides point scores 408. Point scores 408 may
be assigned to each business process path, as described in
more detail below.

FIG. 5 is a screen shot of a single business process path, via
an interface 500, in accordance with one embodiment. In one
embodiment, a single business process path with a name
“UC2-Define TER Rule” 506 is shown via interface 500. As
shown in FIG. 5, the single business process path includes
steps 1-5 (501, 502, 503, 504, and 505). Steps 1-5 (501, 502,
503, 504, and 505) of FIG. 5 correspond to steps 303, 304,
305,306, and 307 of the business process diagram 302 of FIG.
3.

FIG. 6 is a screen shot of a functional model, via an inter-
face 600, in accordance with one embodiment. In one
embodiment, the functional model is represented as a hierar-
chy (tree) 604 of arbitrary depth allowing the software appli-
cation’s features to be decomposed to an arbitrary level of
specificity/granularity. Each node (e.g., 601 and 602) in the
tree may be referred to as a functional feature. In one embodi-
ment, interface 600 allows a user to describe each feature
through textual documentation 603 (e.g., for node 601) and
graphical documentation, and classify each feature along any
lines deemed useful to functional design. The functional fea-
tures (601 and 602) contained by the functional hierarchy 604
support and enable the steps performed by each business
process path, as described above.

FIG. 7 is a screen shot of mapping information between a
business model and a functional model, shown via an inter-
face 700, in accordance with one embodiment. As previously
described, signoffs 701 may be used to ensure that the steps of
a business process path are properly mapped to functional
features. Interface 700 shows signoff information 701 for
each step of a business process path. For path step “Admin
Navigates to T&L Setups,” there are three interested parties
(702, 703, and 704). As shown in FIG. 7, “jfinnegan” has
signed off (i.e., approved) the mapping, while “mvilrokx” and
“aokelley” have not yet signed oft on the particular mapping.

FIG. 8 is a screen shot of a hierarchy 801 of the functional
model that shows which functional features are mapped to
business process paths, shown via an interface 800, in accor-
dance with one embodiment. As shown in FIG. 8, a step
entitled “Admin Views Rules” for a business process path is
mapped to two functional features of the functional model.
Specifically, the step is currently mapped to functional feature
“Rule Set—Search Results” 804 and functional feature “Rule
Set Search Results Toolbar” 805 within hierarchy 801.

FIG. 9 is a screen shot of a technical model, shown via an
interface 900, in accordance with one embodiment. As pre-
viously described, the technical model may cover the techni-
cal architecture and design of the software application. In one
embodiment, the technical model is represented as a hierar-
chy (tree) 904 of arbitrary depth that allows a software appli-

10

15

20

25

30

35

40

45

50

55

60

65

8

cation’s technical components to be decomposed to an arbi-
trary level of granularity. Each node in the tree (e.g., 901 and
902) is referred to as a technical feature. In one embodiment,
interface 900 allows a user to describe each technical feature
through textual 903 (e.g., for node 905) and graphical docu-
mentation, and classify the technical feature along the lines
deemed useful for technical design.

As previously described, in one embodiment, a formal
signoff may be used to ensure that features within the busi-
ness model and the functional model are properly mapped to
each other. Certain embodiments may also use a similar
signoff procedure to ensure that features within the functional
model are properly mapped to features within the technical
model. When an interested party signs off on a mapping
between a functional model feature and corresponding tech-
nical features, the interested party indicates that, if the tech-
nical features are implemented, the implemented technical
features will properly support the functional features mapped
thereto. After a business process path is fully mapped across
all models, a complete list of corresponding technical features
that support the path can be seen. Specifically, once each
created business process path is mapped to features of a
functional model, and the features of the functional model are
mapped to a technical model, a path build list for the business
process path is created.

As described above, in one embodiment, business process
paths are created and prioritized for processing as soon as a
business process is created. As business process paths are
created, they may be added to a backlog of business process
paths and be prioritized to be built. The priority may be
determined by a forced-ranking so that it is clear which path
needs to be built next. Re-scoping of the project may be
performed by changing the forced rankings of paths. When a
project is re-scoped, certain functionality may be pushed
aside for later implementation.

In contrast to the waterfall approach of software develop-
ment (in which the software development process sequen-
tially progresses through development phases), multiple busi-
ness process paths can be worked on in parallel.

Certain embodiments may be configured such that path
build list may be presented to any downstream tools for their
development, either iteratively developed or developed oth-
erwise.

In one embodiment, once a business process path is fully
mapped, the build list corresponding to the path is pushed into
a build tool. The build tool may support agile development.
The path is then built by the development process over various
iterations. Quality assurance may then be performed on the
built paths.

In the event that a functional or technical model is updated
during the software development process, certain mappings
between the models may be affected. For example, suppose a
user decides to update technical features in a technical model.
Some or all of the mappings to those updated technical fea-
tures may then be invalidated. A new mapping may need to be
made between the updated technical features, the functional
features, and/or the business model. Certain embodiments
may detect changes to any of the models in question and
invalidate mappings as required. Certain embodiments may
also notify any interested parties of any changes to any parts
of'the models or mappings

In another embodiment, a software development method-
ology allows a user to label business process paths in order to
track progress against various internal and external mile-
stones. For example, suppose a user is developing 200 busi-
ness process paths. Of the 200 business process paths that
need to be developed, 100 paths could be labeled in accor-

US 9,134,970 B2

9

dance to a first release of a product, 50 paths could be labeled
in accordance to a next release, and 50 paths could be labeled
in accordance to a third release. These labels may change as
desired at any point during the development process.

In another embodiment, as described above, the software
development process may assign point scores (as shown by
point scores 408 of F1G. 4) to each business process path. For
example, the user may “point score” the cost of development
of'business process paths such that, as business process paths
are being built, the velocity of a development team or orga-
nization can be approximated such that expected completion
dates can be associated with the forced-ranked business pro-
cess paths. Such functionality allows users to plan various
aforementioned releases.

In another embodiment, the software development process
enables a user to track dependencies between business pro-
cess paths. Dependencies between different business process
paths necessarily determine a required build order, wherein a
business process path dependent upon an independent busi-
ness process path will be built after the independent process
path, for example.

In one embodiment, dependencies are determined by
specifying data objects in business processes and then nam-
ing specific instances of those business objects as business
process paths are created. When an object is consumed by a
step in the business process, a business process path using that
step names the object instance required by that given path.
Thus, a dependency is established between a producing and
consuming path. For example, referring again to FIG. 5, once
the single business process path of FIG. 5 has been defined, a
consumed object “Rule Template” may be named. See box
for entering name for “Rule template” in step 3 (503) of FIG.
5. A produced object “Rule” may also be named. See box for
entering name for “Rule” in step 5 (505) of FIG. 5. As such,
in certain embodiments, the dependencies between drivers of
incremental delivery (the driver being the business process
path, for example) may be tracked. If the dependencies
between drivers of incremental delivery are not managed,
then a user may not readily re-plan/re-scope the project.

In another embodiment, the software development process
allows auser to freely re-rank business process paths to react
to changing market or external pressures. These re-ranked
paths automatically change the order in which the paths will
be built out. Because certain embodiments have determined
the dependencies between business process paths, a user will
know if certain groups of paths need to be further re-priori-
tized because of their dependencies. Downstream processes,
such as build activity, may dictate that certain paths can no
longer be re-prioritized.

The tool may allow for paths to be locked in position to deal
with this situation. This locking may be related to the statuses
of the Business Process Path Lifecycle, as further described
below. In one embodiment, once a certain percentage of a first
business process path has been built, then this first path can no
longer be prioritized below a second path where build activi-
ties have started for the second path. In another embodiment,
to take greater account of path dependencies, a first path
cannot be prioritized below any second path that has not yet
had its build started if a certain percentage of the cost of the
first path, and all of its dependent paths, have been built. In
another embodiment, when deciding allowable reprioritiza-
tion actions, activities other than build activities may be taken
into account. For example, reprioritization may or may not be
allowed based upon various statuses (and completion per-
centages of those statuses) of the paths and related paths (e.g.,
dependent paths).

10

15

20

25

30

35

40

45

50

55

60

65

10

In another embodiment, the software development process
allows a user to see the coverage of business processes by
paths that have been built out. In one embodiment this leads to
a “heat map” laid over the business process diagram. The heat
map also allows a user to see, at a glance, which parts of the
business process are heavily used by the built business pro-
cess paths and which business process paths are yet to be
built.

In another embodiment, the software development process
allows a user to interface with external systems, as necessary,
to monitor the complete path lifecycle. For example, in one
embodiment, the tool can integrate with an external QA tool,
such as a quality control (“QC”) tool to show the current QA
status of a path being developed. The ability to integrate with
external systems allows for the successful deployment of the
software development process in any real-world situation.

FIG. 10 is a flow diagram of the functionality of software
development module 16 of FIG. 1 in accordance with one
embodiment. In one embodiment, the functionality of the
flow diagram of FIG. 10 is implemented by software stored in
memory or other computer readable or tangible medium, and
executed by a processor. In other embodiments, the function-
ality may be performed by hardware (e.g., through the use of
an application specific integrated circuit (“ASIC”), a pro-
grammable gate array (“PGA”), a field programmable gate
array (“FPGA”), etc.), or any combination of hardware and
software.

At 1001, the models used to define a software application
to be developed are determined. As previously described,
these models may include a business model 201, a functional
model 202, and a technical model 203, as shown in F1IG. 2. As
previously described, the business model may comprise busi-
ness processes and business process paths.

At 1002, the user may define a business process path that is
a particular route through a business process of business
model 201.

At 1003, the user may define mappings for the defined
business process path. As previously described, in defining
mappings, steps of the defined business process paths may be
mapped to a model, such as functional model 202. After all
mappings are finished for a business process path, a path build
list is formed.

At 1004, in one embodiment, the user may present the path
build list to a build tool so that the business process path is
built.

At 1005, the user delivers the business process path that has
been built to a customer.

In view of the above, certain embodiments allow a user to
better communicate the capabilities of a software product
being built to those in the software vendor’s organization and
to customers. The improved communication can be achieved
by using the business process path, for example, as the uni-
versal language between these different parties. The previous
methods did not indicate a particular model or component of
amodel as being the central focus of the development process
for all parties involved.

As described above, certain embodiments allow for true
incremental delivery. Because each built business process
path has real functional meaning, each delivered business
process path expands the capability of a delivered product in
a known, communicable way. As such, customers can more
readily ascertain whether they are going to derive value from
a given increment or not. By combining multi-level mapping
with independently functionally meaningful components of a
driving level (e.g., the business process path), a way of
achieving functionally meaningful incremental delivery is
achieved.

US 9,134,970 B2

11

As described above, certain embodiments also allow users
to re-prioritize parts of a project (e.g., re-prioritize the build-
ing of different business process paths) in response to external
factors with little or no cost to the development organization.

As described above, certain embodiments allow users to
improve software quality through effective handover between
the various parties (with various roles) engaged in developing
apiece of software. The mapping between models means that
the desired capabilities can be built out exactly as intended.

As described above, certain embodiments allow users to
easily perform impact analysis. If a user makes a change to
any model, certain embodiments can immediately communi-
cate an impact to other models. For example, as described
above, if a technical change is made to certain technical
features, an evaluation may be performed regarding whether
any of the functional features mapped to the changed techni-
cal features are impacted. Similarly, a quality assurance orga-
nization can be notified that business process paths associated
with the changed technical features should be re-tested. As
such, auser can therefore see both regular impact analysis and
see the impact of re-prioritization/re-scoping of any delivery
increments/paths.

Further, certain embodiments document the software
design process within an audited database. As such, the user
is provided with a complete and up-to-date definition of the
software application, and no out-of-date design documents
are present.

Several embodiments are specifically illustrated and/or
described herein. However, it will be appreciated that modi-
fications and variations of the disclosed embodiments are
covered by the above teachings and within the purview of the
appended claims without departing from the spirit and
intended scope of the invention.

What is claimed is:
1. A non-transitory computer readable medium including
instructions stored thereon that, when executed by a proces-
sor, cause the processor to provide a software development
tool for developing software that implements a customer’s
business processes, the providing comprising:
determining a plurality of models to define the software to
be developed, wherein at least one model of the plurality
of' models is a business model that comprises at least one
business process, and the at least one business process is
a set of interrelated business process paths that accom-
plish a business goal, wherein one of the plurality of
models is a functional model that comprises functional
features performed by the software to be developed;

defining at least one business process path, wherein the at
least one business process path is a route through the at
least one business process taken during a single execu-
tion of the at least one business process, and the at least
one business process path comprises at least one step to
be performed by the software to be developed;

mapping the defined at least one business process path to
the functional model, wherein the mapping identifies,
for each step of the defined at least one business process
path, at least one corresponding part of the functional
model that implements the at least one step of the busi-
ness process path; and

building the software, which implements each step of the at

least one business process path that has been mapped to
the functional model that comprises the functional fea-
tures.

2. The computer readable medium of claim 1, wherein the
providing further comprises incrementally delivering the
software that has been built to the customer.

10

15

20

25

30

35

40

45

50

55

65

12

3. The computer readable medium of claim 1, the providing
further comprising:

defining other business process paths of the at least one

business process; and

mapping other business process paths of the at least one

business process to the functional model, wherein the
mapping identifies, for each step of the other business
process paths, at least one corresponding part of the
functional model that implements said step of the other
business process paths;

wherein the building the software comprises building the

software to implement the other business process paths
of the at least one business process based on results of
the mapping other business process paths; and

wherein the software implements each step of all of the

business process paths of the at least one business pro-
cess that has been mapped to the functional model that
comprises the functional features.
4. The computer readable medium of claim 1, wherein one
of the plurality of models is a technical model that relates to
the technical design of the software and the providing further
comprising mapping the at least one corresponding part of the
functional model to the technical model.
5. The computer readable medium of claim 4, wherein the
determining of the technical model is independent of the
determining of the functional model.
6. The computer readable medium of claim 1, wherein each
mapping requires approval by reviewers.
7. The computer readable medium of claim 1, wherein the
determining of the business model is independent of the
determining of the functional model.
8. The computer readable medium of claim 1, wherein the
providing further comprises delivering the software that has
been built to the customer.
9. A method for providing a software development tool for
developing software that implements a customer’s business
processes, the method comprising:
determining a plurality of models to define the software to
be developed, wherein at least one model of the plurality
of models is a business model that comprises at least one
business process, and the at least one business process is
a set of interrelated business process paths that accom-
plish a business goal, wherein one of the plurality of
models is a functional model that comprises functional
features performed by the software to be developed;

defining at least one business process path, wherein the at
least one business process path is a route through the at
least one business process taken during a single execu-
tion of the at least one business process, and the at least
one business process path comprises at least one step to
be performed by the software to be developed;

mapping the defined at least one business process path to
the functional model, wherein the mapping identifies,
for each step of the defined at least one business process
path, at least one corresponding part of the functional
model that implements the at least one step of the busi-
ness process path; and

building the software, which implements each step of the at

least one business process path that has been mapped to
the functional model that comprises the functional fea-
tures.

10. The method of claim 9, further comprising incremen-
tally delivering the software that has been built to the cus-
tomer.

11. The method of claim 9, further comprising:

defining other business process paths of the at least one

business process; and

US 9,134,970 B2

13

mapping other business process paths of the at least one
business process to the functional model, wherein the
mapping identifies, for each step of the other business
process paths, at least one corresponding part of the
functional model that implements said step of the other
business process paths;

wherein the building the software comprises building the

software to implement the other business process paths
of the at least one business process based on results of
the mapping other business process paths; and

wherein the software implements each step of all of the

business process paths of the at least one business pro-
cess that has been mapped to the functional model that
comprises the functional features.

12. The method of claim 9, wherein one of the plurality of
models is a technical model that relates to the technical design
of the software and further comprising mapping the at least
one corresponding part of the functional model to the techni-
cal model.

13. The method of claim 9, wherein each mapping requires
approval by reviewers.

14. The method of claim 9, further comprising delivering
the software that has been built to the client.

15. A software development system for developing soft-
ware that implements a customer’s business processes, the
software development tool comprising:

a processor;

a memory coupled to the processor;

a software development module that:

determines a plurality of models to define the software to
be developed, wherein at least one model of the plu-
rality of models is a business model that comprises at
least one business process, and the at least one busi-
ness process is a set of interrelated business process
paths that accomplish a business goal, wherein one of
the plurality of models is a functional model that
comprises functional features performed by the soft-
ware to be developed;

defines at least one business process path, wherein the at
least one business process path is a route through the
at least one business process taken during a single
execution of the at least one business process, and the

—_
w

30

40

14

at least one business process path comprises at least
one step to be performed by the software to be devel-
oped;

maps the defined at least one business process path to the
functional model, wherein the mapping identifies, for
each step of the defined at least one business process
path, at least one corresponding part of the functional
model that implements the at least one step of the
business process path; and

builds the software, which implements each step of the
at least one business process path that has been
mapped to the functional model that comprises the
functional features.

16. The software development system of claim 15, wherein
the software development module further incrementally
delivers the software to the customer.

17. The software development system of claim 15, wherein
the software development module further:

defines other business process paths of the at least one

business process;

maps other business process paths of the at least one busi-

ness process to the functional model, wherein the map-
ping identifies, for each step of the other business pro-
cess paths, at least one corresponding part of the
functional model that implements said step of the other
business process paths; and

builds the software to implement the other business process

paths of the at least one business process based on the
mapping the other business process paths;

wherein the software implements each step of all of the

business process paths of the at least one business pro-
cess that has been mapped to the functional model that
comprises the functional features.

18. The software development system of claim 15, wherein
one of the plurality of models is a technical model that relates
to the technical design of the software and the software devel-
opment module maps the at least one corresponding part of
the functional model to the technical model.

19. The software development system of claim 15, wherein
each mapping requires approval by reviewers.

20. The software development system of claim 15, wherein
the software development module delivers the software that
has been built to the client.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,134,970 B2 Page 1 of 1
APPLICATION NO. : 13/737990

DATED : September 15, 2015

INVENTOR(S) : Joannou et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
On the title page
Column 2, item [56], line 2, delete “developnnent,” and insert -- development, --, therefor.
Column 2, under Assistant Examiner, line 1, delete “Ralukdar” and insert -- Talukdar --, therefor.
In the specification
Column &, line 61, delete “mappings™ and insert -- mappings. --, therefor.
In the claims
Column 11, line 62, claim 1, delete “path” and insert -- path, --, therefor.
Column 12, line 59, claim 9, delete “path” and insert -- path, --, therefor.

Column 14, line 11, claim 15, delete “path™ and insert -- path, --, therefor.

Signed and Sealed this
Twenty-fourth Day of May, 2016

Debatle 7

Michelle K. Lee
Director of the United States Patent and Trademark Office

